by B. Bellezzini

We have seen two classes of states, both forming a complete set, namely those which are created by ecting with local operators on the vecuum, (x) 10>, and those which one associated to Poinceré irreps much as 100>mj and 101> (massive & mostess respectively). sometime we Will d'stinguish them & T v.s. 1 Let's understand now their relation by studying the overlap 195) messive IP X> Westers)

cosimir sulas

(0 | 0 (x) | p o > =?

(asimir of the irrep overlap

(b) (asimir of the irrep overlap

(cosimir of the irrep overlap)

which tells us how much of 1po>, is found in 191x/10>. Likewise we can esk how much 101> is found in Otallo>. Let's focus on the messive states first.

Kemark:

The x"- dependence is easy to extract thanks to translation invariance

(2)
$$\frac{(j_{-},j_{+})}{g(x)} = e^{-jR} \frac{(j_{-},j_{+})}{g(x)} - iR \times -iR \times -i$$

 $\begin{array}{cccc}
(j\cdot j_t) & & -i\kappa \times & (j-j_t) \\
\langle 0| Q(\kappa) | \kappa \sigma \rangle &= & \ell & \langle 0| Q(0) | \kappa, \sigma \rangle \\
Kol Q(\kappa) | \kappa \sigma \rangle &= & \ell & \langle 0| Q(0) | \kappa, \sigma \rangle
\end{array}$

The (3) means that all these wavefunction averlop satisfy Klein-Gordon ag.

Comment: repeating the argument for the everleps of markers multiplet IKI> one finals (of dix) | n l > = e < d blo) | n l > = 0 (of blok) = 0

We can thus focus on $\langle ol \ v_A^{(j-j+)} | \kappa \ \sigma \rangle$ (or $\langle d \ v_A^{(j-j+)} | \kappa \ l \rangle$). In fact, we can simplify it further by recalling that

IK o > = V(L(K,R)) IK o >mj (|K) = U(L(K, K)) |K) =)

(6)

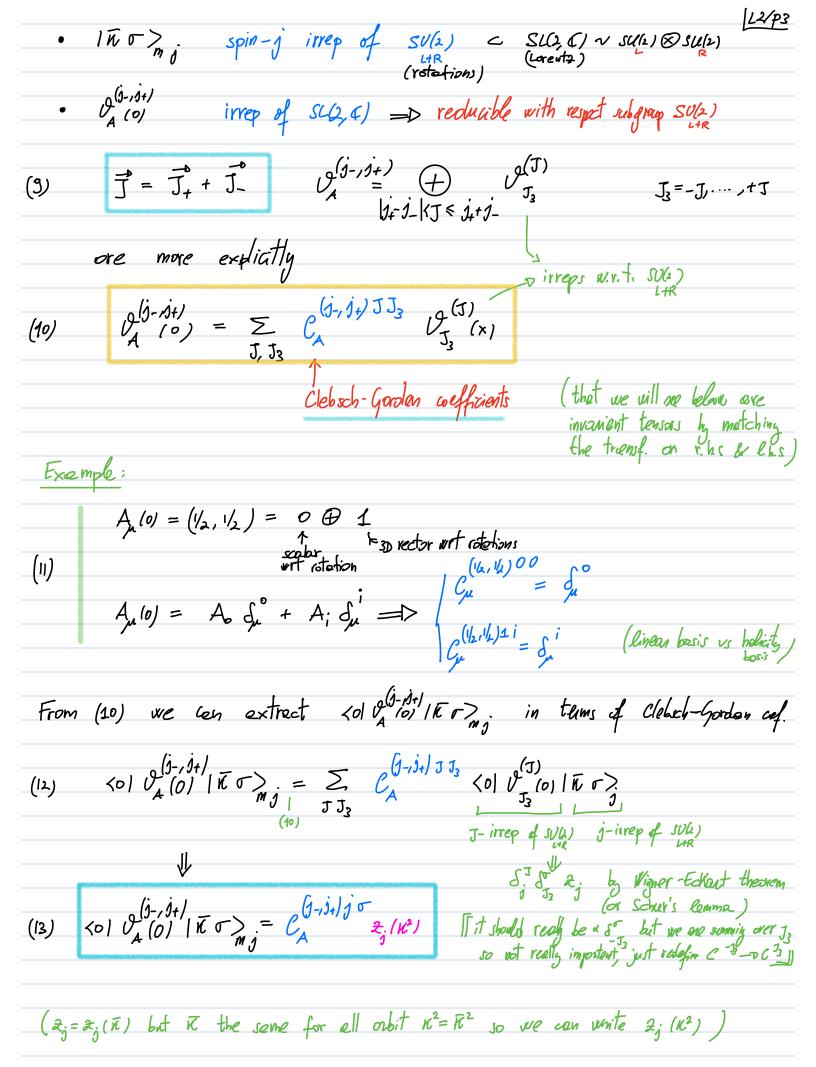
 $\langle o| \ \mathcal{O}_{A}^{\left(j-,j+\right)} \ \mathcal{V}(L|K,E) / |K| \sigma \rangle_{mj} = \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) \ \mathcal{O}_{A}^{\left(j-,j+\right)} \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}(L) \ \mathcal{V}(L) |K| \sigma \rangle_{mj}$ $= \langle o| \ \mathcal{V}($ (7)

 $\langle o| \mathcal{O}_{A}^{(j-,j+)} \mathcal{V}(L(K,\overline{K})) | \overline{K} \sigma \rangle_{mj} = \mathcal{D}_{A}^{(j-,j+)} \langle o| \mathcal{O}_{B}^{(j-,j+)} | \overline{K} \sigma \rangle_{mj}.$

Remark: The (8) is seying that weve-function overlap is nothing but the boosted+ rotated were-function oreslap (0/0/1/N 0) mg. That is, it's enough to determine (0/08 (0) 1 K o) in the preferred frame IN 0> (at the preferred paint x=0) because we can get (010 (0) 1 K o), by covariountly boosting it and rotating it with DE)

Let s determine then (010 100 1 NO) by pure geometric (grap they) recoving

(and we can further get <aO(x)/Ko> by translating it).



12/04
Lesson:
The weve function overlap at $x^n=0$ and $x^n=\overline{x}^n$ is fixed in terms of
group-theon object—the Clabsel-Gordon Cx — up to an overall normalization of the
Kinemetics" D fix tensor structure
"dynamizs" fix the 2/1/2)
Since Kinemetics fixe, almost everything in terms of known objects at x=0 & K=1
and sine going at x40 and generic x4 is obtained by conscient transformations
eq.(8) and (3)
$(14) \qquad \langle 0 V_A^{(j-j)+} \mathcal{K} \rangle = \mathcal{L} \mathcal{D}_{A(LIN,\overline{N})} \mathcal{C}_{B}^{(j-j)+} \mathcal{J}_{J}^{\sigma} $
$(14) \qquad \langle 0 \ V_{A}^{(j-j+)} \ N \ \sigma \rangle_{mj} = e \ D_{A(LN,N)} (j-j+) j \ \sigma $ $= e \ D_{A(LN,N)} (N^{2}) + e \ D_{A(LN,$
seme in any vieury (e.g. +ree chesis)
Since all those foctors in (14) one Known, we will see that we can express the
(of of (x) (K o) as solution of geometric, group-theory, differential constraints.
To this end, it's convenient to make manifest some properties of clabsch-gooden
- Clebsch-Gordon Key properties [1] and [2]
and an activation of the contract of the contr

(j-j+) J J invariant tensors w.r.t. rotations

 $C_{A}^{(j-j)}j\sigma = D_{A}^{(j-j)}(R^{-1}) C_{R}^{(j-j)}j\sigma D_{A}^{(j)}(R)$ (14)

trenderm each index opproprietely give 1

 $(15) \quad D_{A}^{B}(R) \quad C_{B}^{(j-j+1)j\sigma} = C_{A}^{(j-j+1)j\sigma} \quad D_{\sigma}^{(j)}(R) \qquad (D_{R}^{(j-j+1)} \cdot C = CD_{R}^{(j)})$

in index free notation

C's ene on close to the identity or possible in mitable basis, since Done not SU(2 + imps)/(L2/25 Au= (1/2, 1/2) = 0 @ 1 = of Ao + of A; $C_{\mu} = \delta_{\mu} = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial$ (16) $\begin{pmatrix}
1 & 0 \\
0 & R_{3x3}^{-1}
\end{pmatrix} \cdot \begin{pmatrix}
0 & 0 & 0 \\
1 & 3x3
\end{pmatrix} \cdot R_{3x3} = \begin{pmatrix}
1 & 0 \\
0 & R_{3x3}^{-1}
\end{pmatrix} \begin{pmatrix}
0 & 0 & 0 \\
R_{3x3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 3x3
\end{pmatrix}$ Proof of II: insert U(R)U(R)=1 in (13), namely $\frac{2jC_{A} = \langle o| U_{A}(o) | \overline{K} \sigma \rangle}{(j-j+)} = \langle o| V_{A}(o) | \overline{V(R)} | \overline{V(R)} | \overline{K} \sigma \rangle_{jm} \\
= D_{A}^{(j-j+)} D_{A}^{(j)} \sigma(R) \langle o| U_{B}^{(j-j+)} | \overline{K} \sigma \rangle_{jm} = D_{A}^{B}(R') C_{B}^{(j-j+)} D_{A}^{(j-j+)} \sigma(R) Z_{jm}^{(j-j+)}$ CA are pseudo-unitary (not unitary, not even invertible!) $(17-a) \sum_{AA} C_{\overline{A}}^{Y} JJ_{3} P^{\overline{A}A} C_{A}^{j\sigma} = \int_{j}^{J} \int_{\sigma}^{J_{3}} P^{(j)}$ P(0) = 1 $(17-b) \sum_{j\sigma} C_{A}^{j\sigma} P^{(j)} C_{\overline{B}}^{*} = P_{A\overline{B}}$ where we are using a shorthand notation where (j_-,j_+) and (j_+,j_-) are suppressed $\left(e_{\Delta}^{(j-j+)JJ_{3}}\right)^{*} = e_{\overline{\Delta}}^{*}JJ_{3} \qquad \left(E(j_{+},j_{-})\right)$ where \mathbb{P}_{AB} and $\mathbb{P}^{\overline{AB}}$ one the irrep for parity $P: (j-,j+) \longleftrightarrow (j+,j-)$ (13) $\begin{cases} Q^{(j-j)+j} & P_{AB} \\ Q^{(j-j)+j}$

 $A_{\mu} = (1/2, 1/2) \xrightarrow{\rho} P_{\mu} A_{\nu} \qquad P_{\mu} = \begin{pmatrix} +1 \\ -1 \\ -1 \end{pmatrix} = \eta^{\mu} V \text{ which in spinorial imates give}$ $A_{\alpha\dot{\alpha}} = \sigma^{\mu} A_{\mu} \xrightarrow{\rho} \sigma^{\alpha} P_{\nu} A_{\nu} = = = \sigma^{\alpha} P^{\mu} V \text{ which in spinorial imates give}$ $\sigma^{\alpha} = \sigma^{\mu} A_{\mu} \xrightarrow{\rho} \sigma^{\alpha} P_{\nu} A_{\nu} = = \sigma^{\alpha} P^{\mu} V \text{ which in spinorial imates give}$ $\sigma^{\alpha} = \sigma^{\mu} A_{\nu} \xrightarrow{\rho} \sigma^{\alpha} P_{\nu} A_{\nu} = \sigma^{\alpha} P^{\nu} A_{\nu} = \sigma^{\alpha} P^{\mu} V \text{ which in spinorial imates give}$ $\sigma^{\alpha} = \sigma^{\mu} A_{\nu} \xrightarrow{\rho} \sigma^{\alpha} A_{\nu} = \sigma^{\alpha} P^{\nu} A_{\nu} = \sigma^{\alpha} P^{\mu} V \text{ so } A_{\nu}$

There could als be phoses γ_0 with $\gamma_0^2 = 1$, so that $\Gamma_{A\bar{B}}$ & $P^{\bar{A}\bar{B}}$ are strings of σ^0 and σ^0 and possible phoses, in the α 's, λ 's basis where on tenot of with P_{μ} 's

pseudo-unitarity of C's (equivelent to (7))

$$C^{*Aj\sigma} = \sum_{A} C_{A}^{*} \int_{A}^{*} \int_{A}^{$$

Comments.

- Actual unitary conditions would be UU = 1 = UU with U invertible. This can't be fullfilled by C's because (i) not invertible, and (i.i.) the complex conjugation S and $(j_-, j_+) \stackrel{*}{\longrightarrow} U(j_+, j_-)$
- The $O^{(j-i)+}$ \mathcal{P} $O^{(j+i)-j}$ provide irrep \mathbb{F} for painty: this induces irreps lobelled by $\mathbb{P}^{(j)}$ with respect the rotation subgroup. Since $[R, \vec{\mathcal{F}}] = 0$ the $\mathbb{P}^{(j)}$ are just numbers

Example: $A_{i} = (V_{2}, V_{2}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{i}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{0}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{0}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{0}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} + \delta_{i}^{0} A_{0}$ $|| (V_{2}, V_{3}) = 0 \oplus 1 = \delta_{i}^{0} A_{0} +$ (21) Losis J = 0 = j $\int_{\mu}^{i} \gamma^{\mu\nu} \int_{\nu}^{0} = \gamma^{i0} = 0$ J = 0 = j J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 J = 0 (17-6) andly [Z; on ov (-1) + on or (+) = nu If We are besically guossing the right thing by self-consistency of (17-a) and (17-b) encloss, and the obvious intuition that u and v Lorentz indies in our should be controcted by metrics you and your Alternetive, working with A = or An and ABB Position Foods Ax a Aproportion of Approximate property Proof of \mathbb{Z} : Pleaves $\vec{J} = \vec{J}_+ + \vec{J}_-$ involvent, $\vec{P} \cdot \vec{J} \cdot \vec{P} = \vec{J}$ Therefore, rotations R commute with Parity P:

(a2) $D^{(j-j+)}_{(R)} \stackrel{B}{=} P_{A\overline{A}} D^{(j+j-)}_{(R)} \stackrel{\overline{=}}{=} and D^{(j+j-)}_{\overline{B}} \stackrel{\overline{=}}{=} P^{\overline{B}}_{A\overline{A}} D^{(j+j-)}_{(R)} \stackrel{\overline{=}}{=} P^{\overline{B}}_{A} D^{(j+j-)}_{(R)} \stackrel{\overline{=}}{$ (nomely U(RP) OA(0) U(RP) = DA(R) U(P) O(0) U(P) = DA(R) PBB O(0) $\overline{\mathcal{U}}(PR) \ \mathcal{Q}_{A}^{(j-1)+} \ \mathcal{U}(PR) = P_{A\overline{A}} \ \overline{\mathcal{U}}(R) \ \mathcal{Q}_{(o)}^{\overline{A}(j+1)-} \mathcal{U}(R) = P_{A\overline{A}} \ \overline{\mathcal{D}}_{\overline{B}}^{(j+1)-1} \overline{\mathcal{A}}_{\overline{B}}(R) \ \mathcal{Q}_{(o)}^{\overline{B}(j+1)-1}$ The (22) in index-free notation says DG-19+(R)P=PDG(R) and $D^{(j+j-1)}(R) P = P D(R)$. Now, the $C_A^{(j-j+1)j}$ commute as well with rotations (see property 1) and q.(15)), Di-sit/R) Ci-sit/= Ci-sit/Di/R). Therefore the (5 CA JJ3 PAA CA 15 = (CTRC) is involuent tensor w.r.t. notations: $D^{(0)}(R)^{\dagger}(C^{\dagger}PC)D^{(0)}(R) = C^{\dagger}D^{(0)}(R)PD^{(0)}(R)C = CPC$. By schur's lemme it venishes when j=j J3=T and it depends only on j, that is

the eq. (17-a). Similar recogning brigs to (17-b).

But there is a nice and instructive shorcut:

K" of = 0 <= > K" Lulu, IT) of =0 <=> K" En =0 (28)

 $\partial_{\mu}V^{\mu}=0$ $(\Box+m^2)V_{\mu}=0$

Vu (x) = Lol fu(x) IN 0 > m j=1

spin-1 werefurction overlap for to

Remark: The $\mathcal{E}_{\mu}(\bar{\kappa}) \propto \hat{\mu} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is a porticular choice of basis Known as "linear-polarisations". A more common and after convenient basis is instead the holicity-polaritations (or "asculor") where Jz is diegonalized Indeed, by invanione under votations:

(30) $\mathcal{E}_{\mu}(\overline{K}) = \langle o| A_{\mu}|o| |\overline{K}\sigma\rangle = (R^{-1})_{\mu} \mathcal{E}_{\mu}(\overline{K}) \exp(-i\sigma\theta) = (T_3)_{\mu} \mathcal{E}_{\mu}(\overline{K}) = \sigma \mathcal{E}_{\mu}$ 0000

whome solutions are $\mathcal{E}_{u}^{0=\pm} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ \mp i \end{pmatrix}, \quad \mathcal{E}_{u}^{0=\pm} (\overline{K}) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

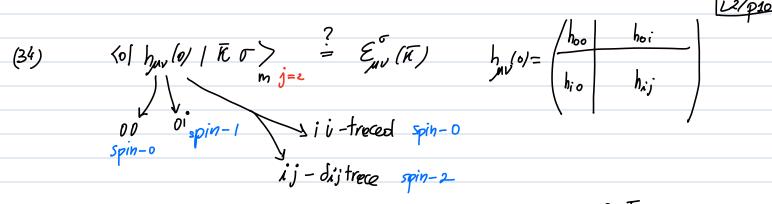
Connected to einea En (K) by an SU(2) rotation (the LGK). Thus in either case

 $\frac{\sum_{k} \sum_{k} |\vec{k}| \sum_{k} |\vec{k}| + \sum_{k} |\vec{k}|$

This is consistent with (21): $- \ge s_i \cdot s_i' = \gamma_{\mu\nu} - s_i' \cdot s_i''$

another non-triviel example: messive spin-2 in hu-hu

 $h_{\mu\nu} = (1,1) + (0,0) = 2 \oplus 1 \oplus 0 \oplus 0 \quad \text{w.r.f. totalism.}$ $traceless \\ sym. port \\ h_{\mu} \qquad 5 \text{ d.o.f.} + 3 + 1 + 1 = 10 \text{ d.o.f. total ok}$



(35)
$$U(R)h_{NN}(o)U(R) = \Lambda_{N}^{\overline{M}}(R) \Lambda_{N}^{\overline{N}}(R) h_{\overline{N}}^{\overline{N}}(o) = \begin{pmatrix} hoo & (R\overline{h})^{\overline{N}} \\ R\overline{h} & R/h R^{\overline{N}} \end{pmatrix}$$

$$(35) U(R)h_{NN}(o)U(R) = \Lambda_{N}^{\overline{M}}(R) \Lambda_{N}^{\overline{N}}(R) h_{\overline{N}}^{\overline{N}}(o) = \begin{pmatrix} hoo & (R\overline{h})^{\overline{N}} \\ R\overline{h} & R/h R^{\overline{N}} \end{pmatrix}$$

$$R_{i}^{\overline{N}} \int_{\mathbb{R}^{N}} R_{N}^{\overline{N}} = \int_{\mathbb{R}^{N}} R_{N}^{\overline{N}}(R) h_{N}^{\overline{N}}(R) h_{N}^$$

(36)
$$\mathcal{E}_{\infty}^{\sigma}(\bar{K}) = Z; \; \mathcal{E}_{ii}^{\sigma}(\bar{K}) = \mathcal{E}_{oi}^{\sigma}(\bar{K}) = 0$$

$$\bar{K}^{\mu}\bar{K}^{\nu}\mathcal{E}_{\mu\nu}(\bar{K}) \qquad \mathcal{E}_{\mu\nu}^{\sigma}(\bar{K}) \qquad \bar{K}^{\varepsilon}\mathcal{E}_{\mu\nu}(\bar{K}) = 0$$

(37)
$$\langle 0| h_{\mu\nu}(x) | K \nabla \rangle_{mj=2} \equiv \psi_{\mu\nu}(x)$$
 spin-2 wavefuction for symmetric tensor $\partial_{\mu}\psi_{(x)}=0$ $\psi_{\mu}(x)=0$ $(1+m^2)\psi_{\mu\nu}=0$

Lesson:

The general lesson here is that wavefunctions satisfy simple covarient constraints, on top of Klein-Gordon equations, simply because they are linear combination of Clebsch-Gordon coefficients which one invarient and pseudo-unitery tensors. The equations of motion for free fields, for which the 1-particle overlaps is all there is, one completely fixed by group theory.

For the sake of completeness let's work at the general constroint equations for any spin and fields, using

(38)
$$T(j) = \sum_{A} \sum_{A} \sum_{A} j \sigma C^{*} B j \sigma \qquad (C^{*Aj\sigma} = \sum_{A} C^{*}_{A} j \sigma P^{AA} P^{(j)})$$
defines orthogonal projectors and (j-,j+) undistant and fixed

and (j-,j+) understand and fixed

(33)
$$\sum_{B} \pi_{A}^{(j)} \pi_{B}^{(s)} = \delta_{j}^{s} \pi_{A}^{(j)} = \delta_{A}^{B}$$

$$\int_{S} \sum_{\sigma} C_{A}^{j\sigma} \sum_{\sigma} C_{B}^{*} C_{B}^{j\sigma} C_{B}^{*} C_{A}^{*} C_{A}^{*} C_{A}^{*} C_{A}^{j\sigma} C_{A}^{*} C_{A}$$

(40)
$$\pi^{(s)} = \pi^{(s)} G_{ij}$$
 $Z_{ij} \pi^{(j)} = 1$ in matrix notation

Now, the wavefunctions
$$2f_A[\bar{n}] = \langle 0| \mathcal{Q}_A^{(b-,j+)} \rangle |\bar{n} \sigma \rangle_{mj} = 2 C_A^{j\sigma}$$
 are proportional to the clabsch-Gordan so that it follows

$$(41) \quad \underset{B}{\overset{5}{\sum}} TL_{A}^{(j)} \mathcal{V}_{B}^{SO} = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{B}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \underset{B}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \overset{F}{\overset{5}{\sum}} C_{A}^{j} \mathcal{F}_{C}^{SO} \right) = \int_{S}^{j} \mathcal{V}^{SO} \left(\underset{F}{\overset{5}{\sum}} C_{A}^{j} \overset{F}{\overset{5}{\sum}} C_{A}^{j} \overset{F}{\overset{5}{\sum}} C_{A}^{j} \overset{F}{\overset{5}$$

(42)
$$\sum_{B} (1 - T^{s})_{A}^{B} Y_{B}^{s\sigma} = (T_{s}^{s} \cdot Y_{s}^{s})_{A} = 0$$
 general werefunction constraint $\partial_{s} \kappa = \kappa$

$$T_{s}^{s} = \sum_{j \neq s} T_{j}^{s} \qquad \text{orthago not projector}$$

$$T_{s}^{s} \cdot T_{s}^{s} = 0$$

which we can promptly recost into a covariant form acting with Da (LIU, II)

Let's see again dur fevorite example:

Vector + = (1/2,1/2) VS

(48)
$$C_{\mu}^{j=0} = \int_{\mu}^{0} \longrightarrow T(\overline{\mu})_{\mu}^{\nu} = \int_{\mu}^{0} \int_{0}^{0} \eta^{\nu}(t) = \int_{\mu}^{0} \eta^{0\nu} \Longrightarrow T(\overline{\mu})_{\mu\nu} = \int_{\mu}^{0} \int_{0}^{0} = \overline{K}_{\mu} \overline{K}_{\nu}$$

(49) =
$$T(x) = K K$$
 $\Rightarrow T(x) = 1 - T(x) = T(x) = 1$ indeed $K_1 V = 0$ for $j=1$

(50)
$$C_{\mu}^{j=1,i} = \int_{\mu}^{i} \left(\text{linear besis} \right) \quad TT \left(\overline{\kappa} \right)_{\mu}^{\nu} = \overline{\Sigma}, \int_{\mu}^{i} \int_{\gamma}^{\gamma} \gamma^{\nu} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) \left(- \right) = - \int_{\mu}^{i} \gamma^{i} \nu^{2} = \int_{\mu}^{i} \int_{\gamma}^{\gamma} \left(- \right) \left(-$$

indeed

(51)
$$\pi^{(j=\nu)\nu} + \pi^{(j=\nu)\nu} = \delta^{\nu} \eta^{\nu\nu} + \delta^{i} \delta^{i}_{i} = \delta^{\nu}$$

(52)
$$T(j=0) = \int_{0}^{j} - T(j=0) = \int_{0}^{j} - K(K)$$
, confirming previous $-2i \mathcal{E}_{\mu}^{i} \mathcal{E}_{\nu}^{i}$